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ABSTRACT
This paper describes the components of a runtime system for launch-
ing parallel applications and presents performance results for start-
ing a job on more than a thousand nodes of a workstation cluster.
This runtime system was developed at Sandia National Laborato-
ries as part of the Computational Plant (CplantTM) project, which is
deploying large-scale parallel computing clusters using commodity
hardware and the Linux operating system. We have designed and
implemented a flexible runtime system that allows for launching
parallel jobs on thousands of nodes in a matter of seconds. The
interactions of the components are described, and the key issues
that address the scalability and performance of the runtime system
are discussed. We also present performance results of launching
executables of varying sizes on more than a thousand nodes.
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1. INTRODUCTION
One of the challenges in any massively parallel processing system
is providing a runtime environment that allows for fast startup of
parallel jobs. Since the primary goal of parallel computing is to
reduce the amount of time required to achieve a solution, it is crit-
ical for a large-scale parallel machine to start jobs as efficiently
as possible. While most suppliers of large-scale parallel comput-
ing platforms emphasize delivering performance to an application
once it is running, few address the time spent getting the application
started. On many systems, this time can be significant.

This limitation also exists in the arena of commodity clusters. The
typical method of using a shell script that loops over UNIX remote
shell or secure shell commands to start processes on remote nodes
in a cluster has severe inherent performance and scalability limita-
tions. However, for many reasons, the problem is not as apparent.
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Most clusters are not concerned with running a single parallel job
across several hundred or a thousand nodes. Because the typical
cluster has a small set of users running on only tens or a few hun-
dreds of nodes, these scalability problems are not as evident.

Large-scale commodity clusters running a single application over
several hundred or thousands of nodes are becoming prevalent.
These machines are intended to be low-cost alternatives to tradi-
tional vendor-supplied supercomputers, and they are required to
run hundreds of different applications from possibly hundreds of
different users. The usage requirements for these machines and the
amount of resources spent on them are significant enough to make
fast job launching a key component to their success.

The Computational Plant (CplantTM)[4] project at Sandia National
Laboratories includes several such large-scale machines. Our two
largest production clusters, a 592-node cluster and a 1024-node
cluster, will soon be combined into a single large machine with
a theoretical peak compute performance of greater than 1.7 trillion
floating-point operations per second (TFLOPS). The system soft-
ware on these machines is modeled after the software that Sandia
designed and developed for the Puma[12] operating system, which
is the basis for the lightweight compute node kernel in use on the
9000 processor ASCI/Red Intel TeraFLOPS[11] machine.

In the next section, we present the components of the runtime sys-
tem that allow large parallel jobs to start on a CplantTM cluster in a
matter of several seconds. Section 3 describes some support tools
for the runtime system. We continue with Section 4, which outlines
the choices that affected the design and interaction of these compo-
nents and describes some of the considerations inherent in these
choices. Performance results for launching various executables on
several hundred nodes are presented in Section 5. We provide an
overview of related work in Section 6 and conclude with a discus-
sion of future work in Section 7. Section 8 provides a summary of
the contributions of this paper.

2. CplantTM

The Computational Plant is a large-scale, massively parallel com-
puting resource composed of commodity computing and network-
ing components. The main goal of the project is to construct a
commodity cluster capable of scaling to the order of ten thousand
nodes to provide the compute cycles required by Sandia’s critical
applications. Because of this scalability requirement, CplantTM has
been designed to address scalability in every aspect of the hardware
and software architectures.

Proceedings of the ACM/IEEE SC2001 Conference (SC’01) 

1-58113-293-X/01 $20.00 © 2001 ACM 



The CplantTM machines employ the partition model of resource pro-
vision[8]� that was initially developed by Intel on their early parallel
platforms. This model divides the machine into several different
partitions that provide specialized functionality. The main parti-
tions are service, compute, and I/O.

The service partition provides a full-featured UNIX environment
where users can log in and perform the usual UNIX commands,
such as compiling codes, editing files, or sending email. The ser-
vice partition is also where the users launch parallel applications
into the compute partition, view status of running jobs, or debug
compute node applications. The service partition is what many
workstation clusters call the “front end.” The service partition is
usually composed of several different machines, and for the current
CplantTM clusters, we employ a load balancing name server to place
new logins on the least loaded machine.

The largest portion of the machine is the compute partition, which
is dedicated to delivering processor cycles and interprocessor com-
munications for parallel applications. Nodes in the compute par-
tition are space-shared such that a group of nodes is dedicated to
running only a single application. Compute nodes typically pro-
vide only a small subset of UNIX functionality in order to max-
imize the resources given to parallel application processes. User
logins directly to compute nodes are prohibited.

The CplantTM runtime system is also modeled after the runtime sys-
tem of ASCI/Red. This runtime system is dependent upon an un-
derlying high-performance system area network, not only for sup-
porting application message passing via a user-level library, such
as MPI[10], but also for supporting compute node allocation, ap-
plication launch, parallel I/O, and debugging tools. CplantTM clus-
ters use the Myrinet [3] gigabit network with a Sandia-designed
message passing interface called Portals[5]. All communication
between the runtime system components is implemented over Por-
tals.

This runtime environment is composed of four functional compo-
nents that work together to start and manage parallel jobs. The
process manager controls the resources on an individual compute
node. It is responsible for starting an application process and pro-
viding it with the basic information needed for the process to be
part of a parallel job. The allocator chooses which compute nodes
to assign to a specific job. The launcher is the component with
which users invoke a parallel job. Finally, the job scheduler is re-
sponsible for applying a policy for queueing and running batch jobs
on the system. The following describes these components in greater
detail.

2.1 Process Manager
The process manager component of the runtime system is called
the Process Control Thread1, or PCT. A PCT runs on each compute
node in the cluster and is responsible for managing the processor
and memory resources on the node it controls. The PCT’s imple-
ment a space-shared system, where each compute node processor
runs a single parallel application process.

The PCT provides the application process on a node with the user’s

1The term “thread” is a misnomer for the current CplantTM envi-
ronment. In the Puma operating system, the PCT was a user-level
thread that was able to perform some privileged operations. The
current Linux implementation of the PCT is a heavyweight daemon
process.

environment as well as the environment needed to participate in a
parallel application. It is responsible for starting the application
process, redirecting UNIX signals to the application process, at-
taching a debugger to the application process, terminating the ap-
plication process, and recovering resources after the application
process terminates.

A compute node is added to the machine when the PCT on the
node contacts the allocator to let it know that the compute node’s
resources are available for hosting an application. During applica-
tion launch, the allocator contacts each of the PCT’s in the parallel
job to let it know that it has been allocated and that it will be con-
tacted by the application launcher.

The PCT’s participating in the parallel job launch form a spanning
tree that allows for efficient group communications, such as broad-
casts and reductions. Efficient communication allows the PCT’s
in a large job to quickly relay global information to compute node
processes.

Once a PCT has been communicated all of the information neces-
sary to start the parallel application process, it starts the process,
and then waits for requests from either the job launcher or from the
application process. The PCT tries to yield as much of the compute
cycles as possible to the application process, while still trying to
service requests in a timely fashion.

When a PCT is not hosting a parallel application process, it per-
forms some minimal health checks on the compute node. In partic-
ular, it checks the available memory on the node and the size of the
RAM disk. Should either of these fall below a threshold for hosting
an application process, the PCT logs the problem, sends a message
to the allocator to let it know it is unable to host an application, and
exits.

2.2 Bebopd
The allocator component of the runtime system is the bebopd2. Be-
bopd runs on a node in the service partition and is responsible for
allocating compute nodes to parallel jobs as requested by the job
launcher. Bebopd is also responsible for providing status informa-
tion about the compute partition, such as the number of free com-
pute nodes and which nodes have been allocated to jobs.

Each PCT contacts bebopd upon startup to make it aware of the
available resources. The launcher also contacts bebopd to reserve
nodes for the parallel job. Bebopd then contacts the PCT’s to insure
that each node is ready to participate in the parallel job. Bebopd
then passes the launcher a list of the available compute nodes on
which the parallel job will run. Once the PCT’s have finished host-
ing the parallel job, they contact bebopd to update their availability
status.

Currently the algorithm used to allocate compute nodes is naive.
Each compute node is assigned a physical node identifier, which is
an integer from 0 to n � 1. The allocator starts with the smallest
available node id and searches the list of node id’s in ascending or-
der to find free nodes. This allocation scheme does not take into
account the network topology of the cluster. Ideally, the allocator
would find nodes that are close together3 to reduce network con-

2Better Engineered Bag Of Pc’s Daemon
3The exact definition of close is a combination of the physical net-
work topology and a combination of other factors, such as the ex-
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tention. The allocator on ASCI/Red does this quite easily, since
the routes� and topology of the machine are fixed. The task is more
challenging for CplantTM machines, since each machine may have
a different topology or even have varying topologies, such as in the
case of a machine that is grown and pruned periodically. We have
inserted hooks into our allocator to allow for more intelligent al-
location schemes, and we are investigating different algorithms for
optimal job placement.

Bebopd is also a single point of failure in the cluster. Should the
bebopd die or become uncommunicative, the ability to launch jobs
or get compute partition status is lost. Initially we imagined the
need distributed allocator that would be responsible for subsets of
the machine. These distributed bebopd’s would communicate with
each other to satisfy a request for nodes, and the loss of a single
bebopd would result in the loss of only a subset of the nodes in
the machine. We have not implemented this distributed allocator
because failures of the current bebopd implementation have been
infrequent, even during times of heavy usage. We have also im-
plemented the bebopd so that it checkpoints its state and can be
restarted after a failure with little loss of information about the cur-
rent state of the machine.

2.3 Yod
The parallel job launcher component of the runtime system is yod4.
Yod contacts bebopd to allocate a set of nodes, and then commu-
nicates with the primary PCT to move the user’s environment and
executable out to the compute nodes.

Once a job has started, yod serves as an I/O proxy for all UNIX
standard I/O functions, including file I/O. Parallel applications on
CplantTM are linked with a library that redefines all of the standard
I/O library routines. This library implements a remote procedure
call interface to yod to perform I/O operations. If a compute node
process calls open(), the library makes a remote request to yod via
message passing. Yod then handles the file open operation locally
and sends the result to the compute node process. This method of
handling terminal and file I/O is sufficient for standard I/O func-
tions and small input or output files. However, because there is
only a single yod process servicing requests from all of the com-
pute node processes in a parallel job, yod becomes a bottleneck
when trying to handle many simultaneous I/O requests or large data
transfers. A separate parallel I/O capability is provided for such op-
erations.

Yod also disseminates some UNIX signals that it receives out to the
processes running in the parallel job. When yod receives a signal,
it sends a message to the primary PCT, which fans the message out
to the other PCT’s in the job and delivers the desired signal to the
application process. This feature can be very useful for operations
such as user-level checkpointing and killing jobs.

Yod has many command-line options, most of which have been the
same throughout successive implementations on the nCUBE, In-
tel Paragon, the Intel TeraFLOPS, and now the CplantTM clusters.
Because yod is the main interface for application developers, it was
important to keep the functionality of yod as similar to previous ma-
chines as possible so that CplantTM would be familiar to our users

act routes from one node to another. While two nodes may be on
the same switch, the route between the nodes may traverse other
switches.
4The name yod is derived from the launcher on the nCUBE, which
was xnc. Each subsequent letter of xnc results in yod.

and allow applications to be ported more easily. The following de-
scribes some of these options.

-size [n] This option indicates the number of processes in the par-
allel job. If no n is specified, it is assumed to be 1.

-l [node list] This option can be used to specify the exact nodes to
use in a job. A comma-separated list of physical node id’s
(-l 1,2,3,4,10) or a range of node id’s (-l 1..4,10).

-attach This option displays a list of allocated nodes and asks
for user confirmation before letting the application processes
proceed to their main function. This option can be used to at-
tach a debugger to the individual processes during the load.

-batch, -interactive These options indicate whether or not the ap-
plication has been run interactively or under the control of
the batch scheduler. Certain runtime semantics change when
running in batch mode. For example, in batch mode, if one
of the processes in the job dies, the entire job is terminated.

-file [name] Redirect yod status messages to the specified file.

-D This option turns on load debugging information. Yod will dis-
play the sequence of load information.

-d [stage] This option turns on specific debugging information in
yod. For example, -d io displays the details of application
I/O requests to yod.

The first argument that yod does not recognize is assumed to be
either the executable to be launched or a loadfile containing a list of
several executable to be launched. A loadfile can contain different
executables each with its own size and command line arguments.
For example, a loadfile containing the following

# comment
-sz 10 exec1 arg1 arg2
-sz 50 exec2 arg3 arg4
-sz 100 exec3 arg5 arg6

would launch a single parallel job composed of the three different
executables, each with its own command-line arguments. Yod can
support launching up to five different executables in a single paral-
lel job. It is also possible to list the same executable with different
command line arguments in a loadfile.

2.4 Batch Scheduler
We have made several enhancements[1] to the open version of the
Portable Batch System (PBS)[2] that allow it to reliably and scal-
ably schedule jobs on thousands of nodes. We also made sev-
eral changes to our runtime components in order to integrate PBS
scheduling.

In contrast to a typical cluster environment where a PBS compo-
nent runs on every compute node, we restrict PBS components to
run only on nodes in the service partition. This restriction provides
several benefits: it reduces the likelihood of running into scalabil-
ity limitations as the number of compute nodes increases, keeps the
compute node cycles under our control, and removes the require-
ment of supporting UNIX sockets on the compute nodes.
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The compute nodes are an abstract resource managed by PBS with
help from� the runtime system. We have added a size resource that is
analogous to the “-size” command-line argument to yod. This value
represents the number of compute nodes requested by a batch job.
The bebopd regularly updates the PBS server with the number of
compute nodes available for PBS jobs. So if a compute node goes
out of service, the PBS size resource will be updated accordingly.
The PBS MOM component puts the size in the batch job’s environ-
ment so that yod can pass it along to the compute node allocator.
The nodes resource in PBS represents the service nodes on which
the job scripts are executed.

A problem on many clusters choosing to schedule jobs with PBS
has been the orderly termination of parallel applications started by
PBS. This problem is exacerbated when the PBS MOM is manag-
ing the job script and not the parallel applications spawned by it.
The PBS MOM on CplantTM was enhanced to kill parallel applica-
tions when the time allocated to the job script has expired. It also
kills parallel applications inadvertently left running by PBS jobs
that have terminated.

We have made changes to PBS qstat command so that the size and
walltime requests of a job are displayed as well as the total compute
nodes in use by different jobs. We also display the amount of time
a job has been queued.

In order to increase the reliability of the PBS components, we have
added the ability to use non-blocking sockets for communication
so that the PBS scheduler component will continue to run properly
in spite of losing touch with a PBS MOM running on a service
node. The patch implementing non-blocking sockets is available
for download at [1] and has been incorporated into PBS at other
sites. This addition has greatly increased the robustness of batch
scheduling on the CplantTM machines.

3. SUPPORT TOOLS
In addition to the runtime components that are involved in launch-
ing an application and servicing running applications, a tool is needed
to look at what jobs are running on the machine and discover how
many compute nodes are available. Most of the available tools for
this are GUI-based. This creates problems when trying to scale up
to several thousand nodes.

3.1 Compute Node Status and Job Manage-
ment

The pingd utility is used to discover the status of the compute par-
tition. With no arguments, it prints a single line of output for every
compute node in the cluster. Each line contains the physical node
number, its location in the machine (rack and node number), the
job id, the process id and rank, the owner of the job, the elapsed
time, and the PBS job number (if started by PBS). It displays the
total number of nodes in the cluster, the total number that are busy,
the total number that are free, and how many are not responding. It
also lists the number of nodes under control of PBS and the number
that are available interactively.

Because pingd displays a single line of output for every compute
node, pingd does not scale past a few tens of nodes. We have a
utility, called showmesh, which is a Perl script that condenses the
output of pingd so that it fits more information into fewer lines
of a terminal. Showmesh represents each compute node with an
ASCII character, using different characters to indicate if a node

is being used, is free, or is unavailable. The CplantTM version of
showmesh is nearly identical to a tool by the same name available
on ASCI/Red.

In addition to compute node status, pingd can also be used to kill
parallel jobs. It is possible to start a yod process in the background
and log out of a service node. However, when logging back into
the cluster, the user is unlikely to be placed on the same service
node where that background yod process is running. Users can use
pingd to reset the compute nodes where a particular job is running,
which essentially kills the parallel application processes and the as-
sociated yod process and makes those compute nodes available to
host another job. Pingd can also be used by privileged administra-
tors to kill the PCT on a particular compute node, which logically
removes it from the cluster.

3.2 Debugging
The CplantTM runtime environment supports the TotalView source-
level parallel debugger from Etnus, Inc. We have implemented
a startup utility that can be used in conjunction with TotalView’s
bulk server launch capability to launch the remote TotalView debug
servers using the PCT’s spanning tree. Each debug server then con-
nects back up to TotalView using TCP/IP. We are in the process of
porting TotalView’s low-level channel-based communication layer
to Portals to get rid of the dependency on TCP/IP.

For initial debugging support, we provided a crude level of de-
bugging using tools based on the GNU debugger, gdb. The PCT
supports launching the application process under control of gdb.
Users can then debug individual compute node processes on a ser-
vice node using a tool called cgdb. cgdb communicates debugger
input to the PCT, which relays the input to the gdb process, and re-
lays the output back to cgdb. Since there is no filesystem available
on the compute node to the gdb process, no source-level debugging
is available with this mechanism. Users can also gather backtrace
information from gdb to help determine where a faulting applica-
tion process was halted.

4. DESIGN CHOICES
The CplantTM runtime system differs from most traditional runtime
systems in a number of ways. The following discusses some of
these differences and related issues.

Our runtime system is designed to efficiently move the executable(s)
from the service partition into the compute partition. Many runtime
environments use a globally mounted filesystem, such as NFS, to
move executable(s). This many-to-one design, where thousands of
clients are accessing a single file on a single server at the exact
same time, is inherently non-scalable. NFS was not designed to
handle this situation and will usually fail in some way or become
unbearably slow under these circumstances.

The use of NFS across the compute partition also implies that the
Internet Protocol (IP) stack is available. While our current com-
pute node operating system (Linux) supports the IP stack, we as-
sume that Portals is the only communication protocol supported
on compute nodes. In order to get maximum performance out of
the high-performance communication fabric, we only implement a
single wire protocol. Portals has been designed to provide flexible
building blocks for higher level protocols, such as those needed to
perform file operations.

Following the model of ASCI/Red, CplantTM compute nodes are
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diskless and do not support virtual memory paging. Each compute
node has a 16 MB RAM disk for storing the executable from which
an application process is created, and all executables that run in the
compute partition are statically linked.

In contrast to most other Linux-based clusters, we wanted to be able
to explore the use of a lightweight kernel in the compute partition.
Our initial plans were to research how some important character-
istics of our previous lightweight kernels might be implemented in
Linux. We also wanted to leave open the possibility of porting our
lightweight kernel to CplantTM compute nodes as well. This desire
to explore a “lightweight” Linux or other lightweight kernel con-
tributed to many of the design decisions for CplantTM. For example,
we assume that the compute node operating system does not sup-
port a local filesystem. All file operations are fulfilled via message
passing to the service or I/O partition where filesystem requests can
be satisfied.

Our runtime system must be flexible enough to support a wide vari-
ety of programming models and high-level communication layers.
Many of the runtime systems available for clusters are tailored to
specific programming models or message passing systems. For ex-
ample, the mpirun scripts and MPD[6] environment provided with
MPICH[9] are specific to MPI. While the majority of our applica-
tions are written in MPI, we support other programming models as
well. For example, we support more fault tolerant programming
models where the loss of a process does not terminate the entire
application.

We decided early on that the runtime system was key in detect-
ing and reporting node failures in a large cluster of 1000 or more
nodes. Although we have an on-going effort to implement scalable
non-intrusive monitoring tools, failures often first become apparent
to the runtime system via application load failures. The group for-
mation and communication functions used by PCT’s when loading
a parallel application are designed to timeout when another PCT is
not responsive or malfunctioning. The problem nodes are detected
by the runtime system and reported to yod, which displays this in-
formation to the user. The user can then notify the system adminis-
trators and attempt to load their application again. In fact, yod will
automatically try again so that application load from a batch script
will succeed. The surviving PCT’s in a failed job launch are re-
turned to the pool of free nodes. In some cases the malfunctioning
compute node is automatically removed from the pool of available
nodes by the bebopd. This fault detection/recovery all occurs in
about 20 seconds, which is the time required for the PCT’s to time-
out while engaging in a collective message passing operation.

5. PERFORMANCE
One of the features available in yod is the ability to display timing
information for various parts of the application load protocol. Yod
can be invoked so that it calculates and prints times for various
phases as it starts a parallel application. Included in this output is
the total time required to start the job. The following phases of the
load protocol are timed:

Allocate nodes: The time for yod to request and be given a list of
compute nodes on which to run.

Initial message: Yod contacts all of the PCT’s in the job with an
initial message to let them know which nodes are involved in
the job.

Form group: Based on the initial load message from yod, the PCT’s
form a spanning tree for broadcasting load data. Yod is con-
tacted when all of the PCT’s have built this tree.

Pull arguments: The root PCT contacts yod to get the command
line arguments for the application and then broadcasts this
data to the rest of the PCT’s.

Pull environment: All of the environment variables associated with
the shell in which yod runs are given to the root PCT which
then broadcasts it to the other PCT’s.

Read file: Time needed for yod to read the executable image from
the local filesystem on the service node.

Fanout: Time needed for the root PCT to read the executable out
of yod’s memory and broadcast it to the other PCT’s.

Pull map: Yod sends a message to the root PCT telling it to pull
the portal process ID map of the application and broadcast
it. This is the time it takes for the root PCT to fetch the map
from yod.

Log time: The time required to compile and communicate log en-
try data to the bebopd so that it can write an entry in a log
file for the job.

Total time The total time the load has taken, from start of the yod
command until all the application processes are ready to call
main().

5.1 Test Environment
In order to measure the performance of the runtime environment,
we built a minimal executable that simply returns 0 in the main
function. When compiled and statically linked, this executable is
about 800 KB in size. We padded this file with zeros to build ex-
ecutables ranging from 2 MB to 14 MB in increments of 2 MB.
Each executable was launched several times on varying numbers of
nodes from one up to 1010 nodes. The timings for each executable
on each node count were collected and averaged.

The CplantTM machine used for testing is a 1024-node cluster name
Ross/Antarctica. Each compute node is a Compaq DS10L, which
is composed of a 466 MHz Alpha 21264 (EV6) with 256 MB of
main memory. Each compute node has a 64-bit 33 MHz Myrinet
LANai-7 network interface card. The nodes in this cluster are
connected using 64-port Myrinet Mesh64 switches connected in a
three-dimensional mesh topology that is torus in the X and Y di-
mensions but not in the Z direction. The Portals message passing
layer achieves just over 100 MB/s peak asymptotic point-to-point
bandwidth on this machine. At the time our data was gathered, only
1010 compute nodes were operational in the machine.

5.2 Results
Figure 1 shows the job launch times for 4 MB, 8 MB, and 12 MB
executables out to 1010 nodes. As one would expect, the job launch
times increase as the number of nodes increases, and the larger exe-
cutables generally take more time. There are a few cases on smaller
numbers of nodes where the size of the executable is not the deter-
mining factor in the launch time, but beyond 64 nodes, this appears
to be the case. More importantly, the graph shows that a 1010-node
job can be launched in less than 17 seconds for a 8 MB executable
on a dedicated system.

In order to determine the effect of system load on the launch perfor-
mance, we repeated these measurements during the day, when the
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Figure 1: Parallel job launch times for the 4 MB, 8 MB and 12
MB executables on a dedicated machine.

machine is most heavily utilized. The scheduling policy on the ma-
chine during this time limits the number of interactive nodes to only
100. Figure 2 shows the launch performance out to 64 nodes. The
impact of a loaded system appears to be minimal on job launching
for such small numbers of nodes. Compared to the performance
on a dedicated machine, the results for a loaded system are some-
times better than on a dedicated machine and are no worse than two
seconds.

Since a majority of jobs run on the system are run under control
of the batch scheduler, we also measured launch performance on
a loaded system using PBS. Since the scheduling policy for the
machine dictates that jobs using half of the available nodes are run
during dedicated time, we limited these jobs to 256 nodes. Figure
3 shows the launch performance of jobs started under PBS. These
numbers are very erratic, especially for jobs run on less than eight
nodes. As with interactive jobs, launch times for batch jobs run
during times of high usage are not significantly worse than launch
times on a dedicated machine.

Table 1 shows the breakdown of the launch times for the 4 MB and
12 MB executables. The phases of the load protocol that increase
significantly in time as the number of nodes increases are high-
lighted. These phases are: the time for the PCT’s to form a group;
the time to fan out the executable to the compute nodes; and the
time to log the start of the job with the allocator. The other phases
remain fairly constant as the number of nodes increases.

In forming the group for broadcasting data, each PCT sends a sta-
tus message to yod indicating that the PCT is ready and willing to
participate in job launch. This many-to-one implementation is in-
herently non-scalable, but was chosen because of its simplicity. It
is easy for yod to recognize a non-responsive PCT or a PCT that is
unable to participate in the job. A more complicated scheme may
offer higher performance, but may sacrifice reliability and recogni-
tion of load problems.

The increased time to fan out the executable is expected. The per-
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Figure 2: Parallel job launch times for the 4 MB, 8 MB and 12
MB executables on a loaded system.

formance of the broadcast is directly related to the performance of
the network, and we would expect that future CplantTM machines
with higher performance networking hardware would perform bet-
ter on this stage of application launch.

Logging the start of the job with the allocator happens in two stages.
First, yod compiles relevant information about the job, including
the name of the user who launched the job, the start time, the com-
mand line, the number of processors, and a list of the nodes used.
This information is then sent to the allocator, which in turn writes
it to a log file. Further instrumentation is needed to accurately de-
termine which operation takes more time as the number of nodes
increases, but it is likely that the message to bebopd is not the cul-
prit. Yod contains code that condenses the node list to find contigu-
ous ranges of nodes in order to minimize the string representing the
node list. It is likely that this compression consumes more time as
the number of nodes is increased. More investigation is needed to
measure the performance of this step of the load protocol to deter-
mine alternate methods of logging the start of a job.

6. RELATED WORK
There are many different runtime systems for parallel computing
environments. While many of these systems encompass the dif-
ferent components described above, few are described in the detail
necessary to analyze the scalability and performance limitations of
launching a parallel application. Even fewer provide performance
data for direct comparison. Two such projects that do provide some
of this data are discussed below.

The Berkeley NOW project implemented a software layer called
GLUNIX (Global Layer UNIX)[7] on top of the Solaris operat-
ing system that implemented parallel application launch as well as
several other cluster management and runtime features. GLUNIX
was able to start a 100-node parallel job in 1.3 seconds. In [7],
a detailed breakdown of the time needed for various tasks in job
startup is given as well as a graph of startup times from 1 to 100
nodes. The size of the executable used to gather this data is not
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64 nodes 128 nodes 256 nodes 512 nodes 1010 nodesPhase
4 MB 12 MB 4 MB 12 MB 4 MB 12 MB 4 MB 12 MB 4 MB 12 MB

Allocate nodes 1.80640 1.45061 1.73317 2.16547 1.52729 1.84222 1.37249 1.52991 2.42833 1.95759
Initial message 0.20285 0.18077 0.20817 0.22959 0.22507 0.24333 0.26238 0.25770 0.48100 0.44273
Form group 0.08424 0.25412 0.09686 0.33935 0.10729 0.29819 0.10255 0.32139 0.14809 0.35136
Pull arguments 0.00085 0.00069 0.00089 0.00093 0.00075 0.00079 0.00077 0.00080 0.04060 0.05088
Pull environment 0.00724 0.00872 0.01399 0.01726 0.02234 0.02239 0.03708 0.05960 0.08491 0.03483
Read file 0.02431 0.07423 0.03432 0.39283 0.03317 0.07491 0.03292 0.07483 0.07035 0.02570
Fanout 2.33431 5.78789 2.62261 7.72959 2.98661 8.40935 3.29289 9.33005 3.53032 9.61980
Pull map 0.12685 0.06555 0.06449 0.03264 0.10784 0.02024 0.07240 0.03997 0.08824 0.04030
Log time 4.54698 4.18872 5.06261 5.00124 5.58053 6.53498 6.51932 6.92485 6.47246 7.73651

Table 1: Breakdown of parallel job launch times (in seconds) for the 4 MB and 12 MB executables on a dedicated machine.

6

8

10

12

14

16

18

20

22

1 2 4 8 16 32 64 128 256

T
o
ta

l 
L
a
u
n
c
h
 T

im
e
 (

s
e
c
o
n
d
s
)

�

Nodes

12 MB
8 MB
4 MB

Figure 3: Parallel job launch times for the 4 MB, 8 MB and 12
MB executables on a loaded system.

given. GLUNIX was limited in scalability by the maximum num-
ber of file descriptors allocated to a single process, and could only
support parallel programs with 341 or fewer processes.

The Multi-Purpose Daemon (MPD)[6] environment for managing
parallel programs was designed and implemented recently at Ar-
gonne National Laboratory to solve the problem of unreasonably
long MPI job startup times on their large Linux cluster. MPD uses
two levels of TCP-connected daemons to start parallel jobs. Each
level of daemons is connected in a ring and control messages are
passed from daemon to daemon around this ring. The choice of a
ring topology is justified by experiments that have shown the design
to be feasible for a thousand daemons. For example, experiments
have shown that a message (of unspecified size) could make 1024
hops around the ring in less than 0.4 seconds. Performance tests
on their large Linux cluster using an executable of unspecified size
demonstrated that a 211-node job started and ran to completion in
about 2 seconds for a single process per node and in about 3.5 sec-
onds for two processes per node. These results do not include the
time required to distribute the executable to the compute nodes.

We had hoped to perform a direct comparison between the CplantTM

application launch and that of a typical cluster environment. Unfor-
tunately, several factors hampered a direct comparison. For exam-
ple, the default MPICH environment assumes that the executable
to be launched is available on a global filesystem such as NFS. It

is non-trivial to measure the amount of time that it takes for the
executable to “move” out to each compute node. Likewise, the
mpirun utility of MPICH does not perform dynamic allocation of
nodes. Rather, it takes as input a file containing a list of hosts on
which to start jobs. In this case, the static allocation model leads to
greater performance, but also leads to a less robust system. Com-
paring individual parts of the load protocol is difficult, since few
runtime systems are implemented similarly. Likewise, it is difficult
to compare total launch times given the disparate functionality that
different runtime systems provide.

7. FUTURE WORK
There are currently many ongoing and planned projects to enhance
the capability of the CplantTM runtime system and add new func-
tionality. We are working on enhancing the ability to the allocator
to place jobs on the machine in a way that reduces network con-
tention. We are also working on support for the MPI-2 dynamic
process creation functions, which will allow a compute node ap-
plication to spawn and communicate with another compute node
application. We are currently working on extending the runtime
environment to support running multiple application processes on
a compute node to better utilize multiprocessor nodes. Our current
environment is implemented for single processor nodes and only
supports running a single application process per node. We are also
planning to support on a library interface to the runtime system so
that third party applications can be written that launch jobs and in-
teract with the runtime system components. We hope to be able to
measure the impact that these projects have on the performance and
scalability of the CplantTM runtime system.

8. SUMMARY
The ability to launch large-scale parallel jobs quickly is critical to
the usability of any massively parallel computing platform. As part
of the CplantTM project, we have designed and implemented a flex-
ible runtime system that allows for starting a parallel job on more
than a thousand nodes in a matter of several seconds. Our run-
time environment also provides many desirable features beyond
that of traditional job starting software provided in typical Linux
clustering environments. The performance analysis that we have
conducted will help us to judge the impact of future enhancements
to the runtime system, and has helped to validate the ability of our
design and implementation to scale to several thousand nodes.
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